Oil & Gas Science and Technology (Apr 2015)

Pore to Core Scale Simulation of the Mass Transfer with Mineral Reaction in Porous Media

  • Bekri S.,
  • Renard S.,
  • Delprat-Jannaud F.

DOI
https://doi.org/10.2516/ogst/2014046
Journal volume & issue
Vol. 70, no. 4
pp. 681 – 693

Abstract

Read online

Pore Network Model (PNM) is used to simulate mass transfer with mineral reaction in a single phase flow through porous medium which is here a sandstone sample from the reservoir formation of the Pakoslaw gas field. The void space of the porous medium is represented by an idealized geometry of pore-bodies joined by pore-throats. Parameters defining the pore-bodies and the pore-throats distribution are determined by an optimization process aiming to match the experimental Mercury Intrusion Capillary Pressure (MICP) curve and petrophysical properties of the rock such as intrinsic permeability and formation factor. The generated network is used first to simulate the multiphase flow by solving Kirchhoff’s laws. The capillary pressure and relative permeability curves are derived. Then, reactive transport is addressed under asymptotic regime where the solute concentration undergoes an exponential evolution with time. The porosity/permeability relationship and the three phenomenological coefficients of transport, namely the solute velocity, the dispersion and the mean reaction rate are determined as functions of Peclet and Peclet-Damköhler dimensionless numbers. Finally, the role of the dimensionless numbers on the reactive flow properties is highlighted.