Minerals (Sep 2021)

Molecular Dynamics Study on the Leaching of Zinc-Bearing Dust Sludge by Choline Chloride-Malonic Acid

  • Jinxia Zhang,
  • Chao Yang,
  • Fusheng Niu,
  • Shuling Gao,
  • Jiajing Dong

DOI
https://doi.org/10.3390/min11101080
Journal volume & issue
Vol. 11, no. 10
p. 1080

Abstract

Read online

Molecular dynamics of the interaction between four metal oxides (ZnO, Fe2O3, Al2O3, and CaO) present in zinc-bearing dust sludge and choline chloride (ChCl)-malonic acid (MA)(1:2) was studied in this work using Materials Studio software. The interaction mechanism was revealed by analyzing the interaction energy and radial distribution function from the perspective of quantum mechanics, and the simulation results were verified by single factor leaching experiments. The calculation results show that the complete cleavage surface of the four metal oxides is the (001) surface, and ChCl-2MA forms a stable structure with multiple intermolecular hydrogen bonds centered on the chlorine atom. The dynamic simulation of the interaction model shows that strength of interaction between ChCl-2MA and the four metal oxides follows the order: ZnO > Fe2O3 > Al2O3 > CaO. ChCl-2MA mainly interacts with ZnO by chemical adsorption, while ChCl-2MA mainly interacts with Fe2O3, Al2O3, and CaO by physical adsorption. The radial distribution function shows that Cl in ChCl-2MA and C=O in MA form chemical bonds with Zn in ZnO, and the choline cation (Ch+) forms C-H···O with ZnO. Among these bonds, the Cl-Zn bond energy is stronger. During the interaction between ChCl-2MA and Fe2O3 and Al2O3, O-H···O and C-H···O are formed and interact with CaO by van der Waals force. Single factor leaching experiments show that, under the same leaching conditions, the leaching rate of ZnO by ChCl-2MA is greater than 90%, while the leaching rate of Fe2O3, Al2O3, and CaO is about 10%. These results indicate good selectivity of ChCl-2MA for ZnO in the zinc-bearing dust sludge. The above conclusions have important theoretical significance and provide an in-depth understanding of the leaching mechanisms of zinc-bearing dust sludge in deep eutectic solvents.

Keywords