Matter and Radiation at Extremes (May 2020)

Key problems of the four-dimensional Earth system

  • Ho-kwang Mao,
  • Wendy L. Mao

DOI
https://doi.org/10.1063/1.5139023
Journal volume & issue
Vol. 5, no. 3
pp. 038102 – 038102-9

Abstract

Read online

Compelling evidence indicates that the solid Earth consists of two physicochemically distinct zones separated radially in the middle of the lower mantle at ∼1800 km depth. The inner zone is governed by pressure-induced physics and chemistry dramatically different from the conventional behavior in the outer zone. These differences generate large physical and chemical potentials between the two zones that provide fundamental driving forces for triggering major events in Earth’s history. One of the main chemical carriers between the two zones is H2O in hydrous minerals that subducts into the inner zone, releases hydrogen, and leaves oxygen to create superoxides and form oxygen-rich piles at the core–mantle boundary, resulting in localized net oxygen gain in the inner zone. Accumulation of oxygen-rich piles at the base of the mantle could eventually reach a supercritical level that triggers eruptions, injecting materials that cause chemical mantle convection, superplumes, large igneous provinces, extreme climate changes, atmospheric oxygen fluctuations, and mass extinctions. Interdisciplinary research will be the key for advancing a unified theory of the four-dimensional Earth system.