AppliedChem (Apr 2025)
Exploring the Roles of Chelating/Fuel Agents in Shaping the Properties of Copper Ferrites
Abstract
In this study, copper ferrite nanoparticles, a type of ferrimagnetic spinel ferrite, were synthesized using the sol-gel auto-combustion method with three different fuels: citric acid, urea, and ethylene glycol. The crystal structures of the synthesized samples were analyzed using X-ray diffraction (XRD), and the growth of secondary phases like Fe2O3 and CuO for samples prepared with urea and ethylene glycol indicated the presence of impurities. Additionally, we observed that the particle size varied significantly with the type of fuel, being the smallest for citric acid and the largest for urea. The electrical and magnetic properties showed strong correlations with the particle size and the presence of impurities. In particular, the optical band gap values, derived from UV-Vis spectroscopy, varied significantly with the choice of fuel, ranging from 2.06 to 3.75 eV. The highest band gap of 3.75 eV was observed in samples synthesized with citric acid. Magnetic properties were measured using a vibrating sample magnetometer (VSM), and it was found that the copper ferrite synthesized with citric acid exhibited the highest values of magnetic saturation and coercivity. These findings demonstrate that the choice of fuel during the synthesis process has substantial impacts on the structural, optical, and magnetic properties of CuFe2O4 nanoparticles.
Keywords