IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2024)
Identification of Optimal and Most Significant Event Related Brain Functional Network
Abstract
Advancements in network science have facilitated the study of brain communication networks. Existing techniques for identifying event-related brain functional networks (BFNs) often result in fully connected networks. However, determining the optimal and most significant network representation for event-related BFNs is crucial for understanding complex brain networks. The presence of both false and genuine connections in the fully connected network requires network thresholding to eliminate false connections. However, a generalized framework for thresholding in network neuroscience is currently lacking. To address this, we propose four novel methods that leverage network properties, energy, and efficiency to select a generalized threshold level. This threshold serves as the basis for identifying the optimal and most significant event-related BFN. We validate our methods on an openly available emotion dataset and demonstrate their effectiveness in identifying multiple events. Our proposed approach can serve as a versatile thresholding technique to represent the fully connected network as an event-related BFN.
Keywords