Journal of Structural and Construction Engineering (Dec 2019)
Damage Evaluation of RC Columns strengthened with Novel Fiber Composites under Blast Loads using Pressure – Impulse Diagrams
Abstract
Blast loads may result Irretrievable damages in structures due to their high amount of applied energy to them during a short period of time. Strengthening and rehabilitation of the structures subject to these sort of loads would be a proper approach to mitigate these damages. Among the available approaches, use of composites so-called Fiber Reinforced Polymers (FRPs), because of their desire properties such as ease in installation and high strength to weight ratio, has been considered the most common solution in recent years. These composites, however, possesses some disadvantages such as low resistance against fire, low glass transition temperature, difficulties in application at low temperatures, impossibility of application on wet surfaces and lack of vapor permeability which have led to use innovative composite materials as alternative. These are normally made of cementitious matrix reinforced by continuous fibers (FRCM). These composites with cement based matrices have good mechanical performances, excellent resistance to high temperature and fire, and also good vapor permeability. Moreover, they can be applied on wet surfaces and in cases of low temperature. Therefore, FRCM materials may constitute an alternative to FRP materials for the strengthening of RC structures. In this paper, performance of RC columns which are subject to blast loading and strengthened with FRP and FRCM composites is investigated using Pressure-Impulse (P-I) diagrams. The results obtained in this study demonstrate that strengthening of structures by FRCM is more efficient in comparison to that of FRP in most cases of damages and therefore could be implemented to protect structures better against blast loads.
Keywords