Brain Sciences (Apr 2023)

Application of Quantitative Computed Tomographic Perfusion in the Prognostic Assessment of Patients with Aneurysmal Subarachnoid Hemorrhage Coexistent Intracranial Atherosclerotic Stenosis

  • Jun Yang,
  • Heze Han,
  • Yu Chen,
  • Fa Lin,
  • Runting Li,
  • JunLin Lu,
  • Ruinan Li,
  • Zhipeng Li,
  • Guangzhi Shi,
  • Shuo Wang,
  • Yuanli Zhao,
  • Xiaolin Chen,
  • Jizong Zhao

DOI
https://doi.org/10.3390/brainsci13040625
Journal volume & issue
Vol. 13, no. 4
p. 625

Abstract

Read online

The comorbidity of aneurysmal subarachnoid hemorrhage (aSAH) with intracranial atherosclerotic stenosis (ICAS) has been suggested to increase the risk of postoperative ischemic stroke. Logistic regression models were established to explore the association between computed tomography perfusion (CTP) parameters and 3-month neurological outcomes and delayed cerebral ischemia (DCI). Prognostic-related perfusion parameters were added to the existing prognostic prediction models to evaluate model performance improvement. Tmax > 4.0 s volume > 0 mL was significantly associated with 3-month unfavorable neurological outcomes after adjusting for potential confounders (OR 3.90, 95% CI 1.11–13.73), whereas the stenosis degree of ICAS was not. Although the cross-validated area under the curve (AUC) was similar after the addition of the Tmax > 4.0 s volume > 0 mL (SAHIT: p = 0.591; TAPS: p = 0.379), the continuous net reclassification index (cNRI) and integrated discrimination index (IDI) showed that the perfusion parameters significantly improved the performance of the two models (p 4.0 s volume > 0 mL is an independent factor of 3-month neurological outcomes. A quantitative assessment of cerebral perfusion may help accurately screen patients with poor outcomes due to the coexistence of aSAH and ICAS.

Keywords