Cell Death Discovery (Apr 2025)

Intratumor fungi specific mechanisms to influence cell death pathways and trigger tumor cell apoptosis

  • Simran S. Ghogare,
  • Ejaj K. Pathan

DOI
https://doi.org/10.1038/s41420-025-02483-z
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Cancer, uncontrolled cell growth due to the loss of cell cycle regulation, is often found to be associated with viral infections and, as recent studies show, with bacterial infections as well. Emerging reports also suggest a strong link between fungi and cancer. The crucial virulence trait of fungi, the switch from yeast (Y) to hyphal (H) form, is found to be associated with carcinogenesis. The physicochemical properties and signal transduction pathways involved in the switch to the hyphal form overlap with those of tumor cell formation. Inhibiting differentiation causes apoptosis in fungi, whereas preventing apoptosis leads to cancer in multicellular organisms. Literature on the fungi-cancer linkage, though limited, is increasing rapidly. This review examines cancer-specific fungal communities, the impact of fungal microbiome on cancer cell progression, similarities between fungal differentiation and cells turning cancerous at biochemical and molecular levels, including the overlaps in signal transduction pathways between fungi and cancer. Based on the available evidence, we suggest that molecules inhibiting the yeast-hyphal transition in fungi can be combined with those targeting tumor cell apoptosis for effective cancer treatment. The review points out fertile research areas where mycologists and cancer researchers can collaborate to unravel common molecular mechanisms. Moreover, antibodies targeting fungal-specific chitin and glucan can be used for the selective neutralization of tumor cells. These new combinations of potential therapies are expected to facilitate the development of target-specific, less harmful and commercially feasible anticancer therapies. We bring together available evidence to argue that fungal infections could either trigger cancer or have a significant role in the development and progression of cancer. Hence, cancer-associated fungal populations could be utilized as a target for a combination therapy involving the integration of anticancer and antifungal drugs as well as inhibitors of fungal morphogenesis to develop more effective anticancer therapies.