International Journal of Molecular Sciences (May 2013)

Vascular Endothelial Growth Factor Induces CXCL1 Chemokine Release via JNK and PI-3K-Dependent Pathways in Human Lung Carcinoma Epithelial Cells

  • Chih-Jen Tsou,
  • Wen-Bin Wu,
  • Chih-Li Chen,
  • Jiunn-Min Shieh,
  • Huey-Ming Lo

DOI
https://doi.org/10.3390/ijms140510090
Journal volume & issue
Vol. 14, no. 5
pp. 10090 – 10106

Abstract

Read online

Lung cancer cells express different chemokines and chemokine receptors that modulate leukocyte infiltration within tumor microenvironment. In this study we screened several mediators/growth factors on CXCL1 release in human carcinoma epithelial cells. Of the tested mediators, VEGF was found to have a robust increase in causing CXCL1 release. VEGF stimulated CXCL1 release and mRNA expression in a time- and concentration-dependent manner. The release was inhibited by the VEGF receptor antagonists and the JNK, PI-3K, tyrosine kinase, and transcription inhibitors. In parallel, VEGF induced JNK, PI3K and Akt activation. Strikingly, among these inhibitors only the JNK inhibitor could reduce VEGF-induced CXCL1 mRNA expression, suggesting that JNK participated in VEGF-induced CXCL1 synthesis, whereas PI-3K was responsible for cellular CXCL1 secretory process. In addition, the steroid dexamethasone and TGF-β suppressed CXCL1 release through a transcriptional regulation. We also showed that cells stimulated with VEGF significantly attracted monocyte migration, which could be abolished by CXCL1 B/N Ab, CXC receptor 2 antagonist, TGF-β, and dexamethasone. In summary, we provide here evidence showing JNK activation for VEGF-induced CXCL1 DNA transcription and PI-3K pathway for extracellular CXCL1 release in human carcinoma epithelial cells. The released CXCL1 was functionally linked to recruiting monocytes into lung cancer cell microenvironment.

Keywords