Atmospheric Chemistry and Physics (May 2022)

An experimental study of the reactivity of terpinolene and <i>β</i>-caryophyllene with the nitrate radical

  • A. Fouqueau,
  • A. Fouqueau,
  • M. Cirtog,
  • M. Cazaunau,
  • E. Pangui,
  • J.-F. Doussin,
  • B. Picquet-Varrault

DOI
https://doi.org/10.5194/acp-22-6411-2022
Journal volume & issue
Vol. 22
pp. 6411 – 6434

Abstract

Read online

Biogenic volatile organic compounds (BVOCs) are intensely emitted by forests and crops into the atmosphere. They can rapidly react with the nitrate radical (NO3) during the nighttime to form a number of functionalized products. Among them, organic nitrates (ONs) have been shown to behave as reservoirs of reactive nitrogen and consequently influence the ozone budget and secondary organic aerosols (SOAs), which are known to have a direct and indirect effect on the radiative balance and thus on climate. Nevertheless, BVOC + NO3 reactions remain poorly understood. Thus, the primary purpose of this study is to furnish new kinetic and mechanistic data for one monoterpene (C10H16), terpinolene, and one sesquiterpene (C15H24), β-caryophyllene, using simulation chamber experiments. These two compounds have been chosen in order to complete the few experimental data existing in the literature. Rate constants have been measured using both relative and absolute methods. They have been measured to be (6.0 ± 3.8) ×10-11 and (1.8 ± 1.4) ×10-11 cm3 molec.−1 s−1 for terpinolene and β-caryophyllene respectively. Mechanistic studies have also been conducted in order to identify and quantify the main reaction products. Total organic nitrates and SOA yields have been determined. Both terpenes appear to be major ON precursors in both gas and particle phases with formation yields of 69 % for terpinolene and 79 % for β-caryophyllene respectively. They are also major SOA precursors, with maximum SOA yields of around 60 % for terpinolene and 90 % for β-caryophyllene. In order to support these observations, chemical analyses of the gas-phase products were performed at the molecular scale using a proton transfer reaction–time-of-flight–mass spectrometer (PTR-ToF-MS) and FTIR. Detected products allowed proposing chemical mechanisms and providing explanations through peroxy and alkoxy reaction pathways.