Vaccines (Oct 2023)

The Expression Kinetics and Immunogenicity of Lipid Nanoparticles Delivering Plasmid DNA and mRNA in Mice

  • Wanyue Zhang,
  • Annabelle Pfeifle,
  • Casey Lansdell,
  • Grant Frahm,
  • Jonathon Cecillon,
  • Levi Tamming,
  • Caroline Gravel,
  • Jun Gao,
  • Sathya N. Thulasi Raman,
  • Lisheng Wang,
  • Simon Sauve,
  • Michael Rosu-Myles,
  • Xuguang Li,
  • Michael J. W. Johnston

DOI
https://doi.org/10.3390/vaccines11101580
Journal volume & issue
Vol. 11, no. 10
p. 1580

Abstract

Read online

In recent years, lipid nanoparticles (LNPs) have emerged as a revolutionary technology for vaccine delivery. LNPs serve as an integral component of mRNA vaccines by protecting and transporting the mRNA payload into host cells. Despite their prominence in mRNA vaccines, there remains a notable gap in our understanding of the potential application of LNPs for the delivery of DNA vaccines. In this study, we sought to investigate the suitability of leading LNP formulations for the delivery of plasmid DNA (pDNA). In addition, we aimed to explore key differences in the properties of popular LNP formulations when delivering either mRNA or DNA. To address these questions, we compared three leading LNP formulations encapsulating mRNA- or pDNA-encoding firefly luciferase based on potency, expression kinetics, biodistribution, and immunogenicity. Following intramuscular injection in mice, we determined that RNA-LNPs formulated with either SM-102 or ALC-0315 lipids were the most potent (all p-values p-values p p p < 0.0001). Overall, this study provides important insights into the differences between leading LNP formulations and their applicability to DNA- and RNA-based vaccinations.

Keywords