Molecules (Sep 2024)
Microencapsulation of Extracts of Strawberry (<i>Fragaria vesca</i>) By-Products by Spray-Drying Using Individual and Binary/Ternary Blends of Biopolymers
Abstract
Valorization of agricultural and food by-products (agri-food waste) and maximum utilization of this raw material constitute a highly relevant topic worldwide. Agri-food waste contains different types of phytochemical compounds such as polyphenols, that display a set of biological properties, including anti-inflammatory, chemo-preventive, and immune-stimulating effects. In this work, the microencapsulation of strawberry (Fragaria vesca) plant extract was made by spray-drying using individual biopolymers, as well as binary and ternary blends of pectin, alginate, and carrageenan. The microparticle morphologies depended on the formulation used, and they had an average size between 0.01 μm and 16.3 μm considering a volume size distribution. The encapsulation efficiency ranged between 81 and 100%. The kinetic models of Korsmeyer–Peppas (R2: 0.35–0.94) and Baker–Lonsdale (R2: 0.73–1.0) were fitted to the experimental release profiles. In general, the releases followed a “Fickian Diffusion” mechanism, with total release times varying between 100 and 350 (ternary blends) seconds. The microparticles containing only quercetin (one of the main polyphenols in the plant) showed higher antioxidant power compared to the extract and empty particles. Finally, the addition of the different types of microparticles to the gelatine (2.7 mPa.s) and to the aloe vera gel (640 mPa.s) provoked small changes in the viscosity of the final gelatine (2.3 and 3.3 mPa.s) and of the aloe vera gel (621–653 mPa.s). At a visual level, it is possible to conclude that in the gelatine matrix, there was a slight variation in color, while in the aloe vera gel, no changes were registered. In conclusion, these microparticles present promising characteristics for food, nutraceutical, and cosmetic applications.
Keywords