Energies (May 2023)
Paleoenvironment Change and Organic Matter Accumulation of Marine Shale in the Zigong Area, Southern Sichuan Basin, China: A Case Study of Well Z303
Abstract
Marine organic-rich shale is widely distributed in the Upper Ordovician Wufeng Formation (WF-F) and Silurian Longmaxi Formation (LMX-F), making it an important target for shale gas exploration and development. In order to clarify the paleoenvironment evolution characteristics and the effect of depositional environment on organic matter (OM) accumulation of the marine shale in the Wufeng and Longmaxi Formations, a series of geochemical and petrological experiments were carried out, including TOC, Rock-Eval pyrolysis, XRD, and major and trace element analyses. Research results show that based on the variation characteristics of TOC, mineral composition, and paleoenvironment evolution characteristics, four units can be identified from bottom to top: Wufeng Formation (WF-F), Lower Longmaxi Formation (L-LMX-F), Middle Longmaxi Formation (M-LMX-F) and Upper Longmaxi Formation (U-LMX-F). The high-quality marine shale developed in WF-F and LMX-F in the Zigong area (TOC: 0.65–4.56%, avg. 2.15%) contains type I kerogen (kerogen type index: 86.0–98.3, avg. 92.7) and OM in mature stage (average of Rb and Tmax are 2.94%, 646 °C, respectively). Clay minerals (avg. 42.5%) and quartz (avg. 37.7%) dominate the mineral compositions, with subordinated dolomite (avg. 6.3%), feldspar (avg. 6.0%), calcite (avg. 4.0%), and pyrite (avg. 3.5%). Paleoenvironment indicators suggest that during the sedimentary period of WF-F and L-LMX-F, the paleoclimate condition was humid; the weathering condition, paleosalinity, and redox conditions were the strongest; and there was a relatively high level of paleoproductivity and a relatively low level of terrigenous detritus influx. However, during the period of M-LMX-F and U-LMX-F, the climate gradually changed from warm and humid to hot and dry; the intensity of weathering conditions, paleosalinity, and redox conditions was relatively reduced; terrigenous detritus influx increased; and the paleoproductivity decreased. Relationships between TOC and paleoclimate condition, paleosalinity, redox condition, paleoproductivity, and terrigenous detritus influx suggest that redox condition is most important controlling factor for OM enrichment. A combination of anoxic bottom water conditions and high primary productivity and a relatively low terrigenous input resulted in the enrichment of OM in the WF-F and L-LMX-F, making it a potential exploration and development target. The research can provide scientific guidance for the selection of potential shale gas development targets in the Zigong area.
Keywords