AIMS Mathematics (Jun 2017)
Logarithmically improved regularity criteria for the Boussinesq equations
Abstract
In this paper, logarithmically improved regularity criteria for the Boussinesq equations are established under the framework of Besov space $\overset{.}{B}_{\infty ,\infty }^{-r}$. We prove the solution $(u,\theta )$ is smooth up to time $T>0$ provided that \begin{equation} \int_{0}^{T}\frac{\left\Vert u(\cdot ,t)\right\Vert _{\overset{.}{B} _{\infty ,\infty }^{-r}}^{\frac{2}{1-r}}}{\log (e+\left\Vert u(t,.)\right\Vert _{\overset{.}{B}_{\infty ,\infty }^{-r}})}dt<\infty \end{equation} for some $0\leq r<1$ or \begin{equation} \left\Vert u(\cdot ,t)\right\Vert _{L^{\infty }(0,T;\overset{.}{B}_{\infty ,\infty }^{-1}(\mathbb{R}^{3}))}<<1. \end{equation} This result improves some previous works.
Keywords