BMC Neurology (Oct 2024)
Investigating the association between the GAP-43 concentration with diffusion tensor imaging indices in Alzheimer’s dementia continuum
Abstract
Abstract Background Synaptic degeneration, axonal injury, and white matter disintegration are among the pathological events in Alzheimer’s disease (AD), for which growth-associated protein 43 (GAP-43) and diffusion tensor imaging (DTI) could be an indicator. In this study, the cerebrospinal fluid (CSF) GAP-43 clinical trajectories and their association with progression and AD hallmarks with white matter microstructural changes were evaluated. Methods A total number of 133 participants were enrolled in GAP-43 and DTI values were compared between groups, both cross-sectionally and longitudinally with two and four-year follow-ups. Subsequently, the correlation between GAP-43 levels in the CSF and DTI values was investigated using Spearman’s correlation. Results The CSF level of GAP-43 is negatively correlated with the mean diffusivity measures in Fornix (Cres)/Stria terminals in early and late MCI (rs=-0.478 p = 0.021 and rs=-0.425 p = 0.038). Additionally, the CSF level of GAP-43 is negatively correlated with fractional anisotropy in the cingulum in late MCI (rs=-0.437 p = 0.033). Moreover, the axial diffusivity in superior corona radiate (rs=-0.562 p = 0.005 and rs=-0.484 p = 0.036) and radial diffusivity in superior fronto-occipital fasciculus was negatively correlated with GAP-43 level in the early and mid-MCI participants (rs=-0.520 p = 0.011 and rs=-0.498 p = 0.030). Conclusions Presynaptic marker GAP-43 in combination with DTI can be used as a novel biomarker to identify microstructural synaptic degeneration in the early MCI. In addition, it can be used as a biomarker for tracking the progression of AD and monitoring treatment efficacy.
Keywords