Proceedings (Nov 2018)
Modelling Fluid Damping of Non-Conventional Vibration Modes in MEMS Resonators
Abstract
Resonant micro- and nanoelectromechanical systems (MEMS/NEMS) are typically subject to interaction with a liquid or gaseous environment. Recently, it has been demonstrated that non-conventional eigenmodes exhibit remarkably high quality factors (Q factors) in liquids. However, the physical origin of this phenomenon remains elusive. Here we introduce a definition of non-conventional eigenmodes for cantilever structures and develop a boundary integral method for describing the interaction of an incompressible viscous fluid and a non-conventional eigenmode of a MEMS/NEMS resonator. With this framework we are able to study the influence of the mode shape on the fluid-structure interaction.
Keywords