Water (Aug 2024)

Optimized Layout of Large-Scale Coal-Fired Power Plant CCUS Projects under Water Resource Constraints in China

  • Peng-Tao Wang,
  • Feiyin Wang,
  • Mao Xu

DOI
https://doi.org/10.3390/w16162313
Journal volume & issue
Vol. 16, no. 16
p. 2313

Abstract

Read online

Carbon capture, utilization, and storage (CCUS) technologies are an integral part of the carbon-neutral technology portfolio at the present phase. However, large-scale implementation of CCUS technologies may increase urban water consumption and raise urban water security issues. In this paper, 596 large-scale coal-fired power plants were investigated in terms of water withdrawal and water consumption. To minimize total water withdrawal and total water consumption, a source-sink matching model for CCUS projects under water resource constraints was established to optimize the layout of CCUS projects in China. The results show that there is a mismatch between the distribution of coal-fired power plants in a spatial location and water resources. The annual increase in water withdrawal of about 27.6 billion tons and water consumption of about 2.4 billion tons is needed to achieve the 2 °C target, which will aggravate the water scarcity in the north-central cities. Implementation of CO2-enhanced water recovery (CO2-EWR) technology can offset some of the increase in urban water consumption owing to CCUS deployment. This study can provide data support for site selection in the large-scale deployment of CCUS technology and provide the theoretical basis for decision-makers to lay out CCUS projects.

Keywords