Ceramics-Silikáty (Sep 2011)
PERFORMANCE OF CEMENT MORTARS REPLACED BY GROUND WASTE BRICK IN DIFFERENT AGGRESSIVE CONDITIONS
Abstract
This article investigates the sulphate resistance of cement mortars when subjected to different exposure conditions. Cement mortars were prepared using ground waste brick (GWB) as a pozzolanic partial replacement for cement at replacement levels of 0%, 2.5%, 5%, 7.5, 10%, 12.5 and 15%. Mortar specimens were stored under three different conditions: continuous curing in lime-saturated tab water (TW), continuous exposure to 5% sodium sulphate solution (SS), and continuous exposure to 5% ammonium nitrate solution (AN), at a temperature of 20 ± 3 ºC, for 7, 28, 90, and 180 days. Prisms with dimensions of 25×25×285 mm, to determine the expansions of the mortar samples; and another set of prisms with dimensions of 40×40×160 mm, were prepared to calculate the compressive strength of the samples. It was determined that the GWB replacement ratios between 2.5% and 10% decreased the 180 days expansion values. The highest compressive strength values were found for the samples with 10% replacement ratio in the TW, SS, and AN conditions for 180 days. The microstructure of the mortars were investigated using scanning electron microscopy (SEM) and the Energy dispersive X-ray (EDX).