iScience (Sep 2022)

Leishmania amazonensis sabotages host cell SUMOylation for intracellular survival

  • Kendi Okuda,
  • Miriam Maria Silva Costa Franco,
  • Ari Yasunaga,
  • Ricardo Gazzinelli,
  • Michel Rabinovitch,
  • Sara Cherry,
  • Neal Silverman

Journal volume & issue
Vol. 25, no. 9
p. 104909

Abstract

Read online

Summary: Leishmania parasites use elaborate virulence mechanisms to invade and thrive in macrophages. These virulence mechanisms inhibit host cell defense responses and generate a specialized replicative niche, the parasitophorous vacuole. In this work, we performed a genome-wide RNAi screen in Drosophila macrophage-like cells to identify the host factors necessary for Leishmania amazonensis infection. This screen identified 52 conserved genes required specifically for parasite entry, including several components of the SUMOylation machinery. Further studies in mammalian macrophages found that L. amazonensis infection inhibited SUMOylation within infected macrophages and this inhibition enhanced parasitophorous vacuole growth and parasite proliferation through modulation of multiple genes especially ATP6V0D2, which in turn affects CD36 expression and cholesterol levels. Together, these data suggest that parasites actively sabotage host SUMOylation and alter host transcription to improve their intracellular niche and enhance their replication.

Keywords