Mathematics (Apr 2024)
Group Doubly Coupled Designs
Abstract
Doubly coupled designs (DCDs) have better space-filling properties between the qualitative and quantitative factors than marginally coupled designs (MCDs) which are suitable for computer experiments with both qualitative and quantitative factors. In this paper, we propose a new class of DCDs, called group doubly coupled designs (GDCDs), and provide methods for constructing two forms of GDCDs, within-group doubly coupled designs and between-group doubly coupled designs. The proposed GDCDs can accommodate more qualitative factors than DCDs, when the subdesigns for the qualitative factors are symmetric. The subdesigns of qualitative factors are not asymmetric in the existing results on DCDs, and in this paper, we construct GDCDs with symmetric and asymmetric designs for the qualitative factors, respectively. Moreover, detailed comparisons with existing MCDs show that GDCDs have better space-filling properties between qualitative and quantitative factors. Finally, the methods are particularly easy to implement.
Keywords