Remote Sensing (Sep 2024)
Multi-Domain Joint Synthetic Aperture Radar Ship Detection Method Integrating Complex Information with Deep Learning
Abstract
With the flourishing development of deep learning, synthetic aperture radar (SAR) ship detection based on this method has been widely applied across various domains. However, most deep-learning-based detection methods currently only use the amplitude information from SAR images. In fact, phase information and time-frequency features can also play a role in ship detection. Additionally, the background noise and the small size of ships also pose challenges to detection. Finally, satellite-based detection requires the model to be lightweight and capable of real-time processing. To address these difficulties, we propose a multi-domain joint SAR ship detection method that integrates complex information with deep learning. Based on the imaging mechanism of line-by-line scanning, we can first confirm the presence of ships within echo returns in the eigen-subspace domain, which can reduce detection time. Benefiting from the complex information of single-look complex (SLC) SAR images, we transform the echo returns containing ships into the time-frequency domain. In the time-frequency domain, ships exhibit distinctive features that are different from noise, without the limitation of size, which is highly advantageous for detection. Therefore, we constructed a time-frequency SAR image dataset (TFSID) using the images in the time-frequency domain, and utilizing the advantages of this dataset, we combined space-to-depth convolution (SPDConv) and Inception depthwise convolution (InceptionDWConv) to propose Efficient SPD-InceptionDWConv (ESIDConv). Using this module as the core, we proposed a lightweight SAR ship detector (LSDet) based on YOLOv5n. The detector achieves a detection accuracy of 99.5 with only 0.3 M parameters and 1.2 G operations on the dataset. Extensive experiments on different datasets demonstrated the superiority and effectiveness of our proposed method.
Keywords