Biomedicines (Nov 2021)

Zonal-Layered Chondrocyte Sheets for Repairment of Full-Thickness Articular Cartilage Defect: A Mini-Pig Model

  • Po-Chih Shen,
  • Cheng-Chang Lu,
  • Shih-Hsiang Chou,
  • Zi-Miao Liu,
  • Shu-Jem Su,
  • Yin-Chun Tien

DOI
https://doi.org/10.3390/biomedicines9121806
Journal volume & issue
Vol. 9, no. 12
p. 1806

Abstract

Read online

The cell sheet technique is a promising approach for tissue engineering, and the present study is aimed to determine a better configuration of cell sheets for cartilage repair. For stratified chondrocyte sheets (S-CS), articular chondrocytes isolated from superficial, middle, and deep zones were stacked accordingly. Heterogeneous chondrocyte sheets (H-CS) were obtained by mixing zonal chondrocytes. The expressions of chondrocytes, cytokine markers, and glycosaminoglycan (GAG) production were assessed in an in vitro assay. The curative effect was investigated in an in vivo porcine osteochondral defect model. The S-CS showed a higher cell viability, proliferation rate, expression of chondrogenic markers, secretion of tissue inhibitor of metalloproteinase, and GAG production level than the H-CS group. The expressions of ECM destruction enzyme and proinflammatory cytokines were lower in the S-CS group. In the mini-pigs articular cartilage defect model, the S-CS group had a higher International Cartilage Repair Society (ICRS) macroscopic score and displayed a zonal structure that more closely resembled the native cartilage than those implanted with the H-CS. Our study demonstrated that the application of the S-CS increased the hyaline cartilage formation and improved the surgical outcome of chondrocyte implication, offering a better tissue engineering strategy for treating articular cartilage defects.

Keywords