Cell Transplantation (Dec 2011)
Functional Modulation of Choroid Plexus Epithelial Clusters in Vitro for Tissue Repair Applications
Abstract
One of the primary obstacles in the restoration or repair of damaged tissues is the temporospatial orchestration of biological and physiological events. Cellular transplantation is an important component of tissue repair as grafted cells can serve as replacement cells or as a source of secreted factors. But few, if any, primary cells can perform more than a single tissue repair function. Epithelial cells, derived from the choroid plexus (CP), are an exception to this rule, as transplanted CP is protective and regenerative in animal models as diverse as CNS degeneration and dermal wound repair. They secrete a myriad of proteins with therapeutic potential as well as matrix and adhesion factors, and contain responsive cytoskeletal components potentially capable of precise manipulation of cellular and extracellular niches. Here we isolated CP from neonatal porcine lateral ventricles and cultured the cells under a variety of conditions to specifically modulate tissue morphology (2D vs. 3D) and protein expression. Using qRT-PCR analysis, transmission electron microscopy, and gene microarray studies we demonstrate a fine level of control over CP epithelial cell clusters opening further opportunities for exploration of the therapeutic potential of this unique tissue source.