Journal of Applied and Computational Mechanics (Jul 2021)

Stability Analysis of Articulated Bus in Straight-ahead Running Manoeuvre

  • Alessandro De Felice,
  • Matteo Mercantini,
  • Silvio Sorrentino

DOI
https://doi.org/10.22055/jacm.2021.36566.2869
Journal volume & issue
Vol. 7, no. 3
pp. 1649 – 1662

Abstract

Read online

A comprehensive study on the stability of a planar linearized single-track model of a two-section pusher articulated bus is presented with the aid of a complete set of stability maps. The two sections of the vehicle model are connected at the hitch point by a revolute joint; an equivalent visco-elastic characteristic function describes its rotational visco-elastic properties, playing a major role in stability control and therefore in passive safety. The equations of motion are derived in analytical form, allowing easy implementation of the non-linear model (eventually including a non-linear viscoelastic characteristic functions of the joint). Stability of the linearized model is then studied in equilibrium configurations by means of sensitivity analysis with respect to the model’s governing parameters. Stability maps are drawn on the basis of sets of parameter values related to straight-ahead running, steady-state manoeuvres. The most important parameters controlling the onset of unstable motions are identified, paying attention to the role played by the equivalent rotational damping coefficient and the equivalent torsional stiffness characterizing the connection joint, with the aim of finding criteria for its design.

Keywords