Veterinary Research (Dec 2022)

Hemolysin function of Listeria is related to biofilm formation: transcriptomics analysis

  • Ruidan Li,
  • Qian Liang,
  • Sicheng Tian,
  • Yunwen Zhang,
  • Sijing Liu,
  • Qian Ou,
  • Zhaobin Chen,
  • Chuan Wang

DOI
https://doi.org/10.1186/s13567-022-01124-y
Journal volume & issue
Vol. 53, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Listeriolysin O (LLO) is the main virulence protein of Listeria monocytogenes (LM), that helps LM escape lysosomes. We previously found that the cellular immune response elicited by L.ivanovii (LI) is weaker than that elicited by LM. We speculated that this may be related to the function of ivanolysin O (ILO). Here, we constructed hemolysin gene deletion strain, LIΔilo, and a modified strain, LIΔilo::hly, in which ilo was replaced by hly. Prokaryotic transcriptome sequencing was performed on LI, LIΔilo, and LIΔilo::hly. Transcriptome differences between the three strains were compared, and genes and pathways with significant differences between the three strains were analyzed. Prokaryotic transcriptome sequencing results revealed the relationship of ilo to the ribosome, quorum sensing, and phosphotransferase system (PTS) pathways, etc. LIΔilo exhibited attenuated biofilm formation ability compared to LI. Biofilm formation was significantly recovered or even increased after replenishing hly. After knocking out ilo, the relative expression levels of some virulence genes, including sigB, prfA, actA, smcL, and virR, were up-regulated compared to LI. After replenishing hly, these genes were down-regulated compared to LIΔilo. The trend and degree of such variation were not completely consistent when cultured in media containing only monosaccharides or disaccharides. The results confirmed that hemolysin is related to some important biological properties of Listeria, including biofilm formation and virulence gene expression levels. This is the first comprehensive study on ILO function at the transcriptomic level and the first evidence of a relationship between Listeria hemolysin and biofilm formation.

Keywords