Reproductive Biology and Endocrinology (Aug 2007)
PKCepsilon and an increase in intracellular calcium concentration are necessary for PGF2alpha to inhibit LH-stimulated progesterone secretion in cultured bovine steroidogenic luteal cells
Abstract
Abstract The hypotheses that PKCepsilon is necessary for: 1) PGF2alpha to inhibit LH-stimulated progesterone (P4) secretion, and 2) for the expression of key prostaglandin synthesizing/metabolizing enzymes were tested in bovine luteal cells in which PKCepsilon expression had been ablated using a validated siRNA protocol. Steroidogenic cells from Day -6 bovine corpus luteum (CL) were isolated and transfected to reduce PKCepsilon expression after 48, 72 and 96 h. A third tested hypothesis was that an increase in intracellular calcium concentration ([Ca(2+)]i) is the cellular mechanism through which PGF2alpha inhibits luteal progesterone. The hypothesis was tested with two pharmacological agents. In the first test, the dose-dependent effects on raising the [Ca(2+)]i with the ionophore, A23187, on basal and LH-stimulated P4 secretion in cells collected from early (Day -4) and mid-cycle (Day -10) bovine CL was examined. In the second test, the ability of PGF2alpha to inhibit LH-stimulated P4 secretion in Day-10 luteal cells was examined under conditions in which an elevation in [Ca(2+)]i had been buffered by means of the intracellular calcium chelator, Bapta-AM. PKCepsilon expression was reduced 65 and 75% by 72 and 96 h after transfection, respectively. In cells in which PKCepsilon expression was ablated by 75%, the inhibitory effect of PGF2alpha on LH-stimulated P4 secretion was only 29% lower than in the LH-stimulated group. In contrast, it was reduced by 75% in the group where PKCepsilon expression had not been reduced (P 5). The inhibitory effect of PGF2alpha on LH-stimulated P4 in Day -10 cells was reduced if an increase in [Ca(2+)]i was prevented with Bapta-AM. These results support the hypothesis that differential expression of PKCepsilon and an elevation of [Ca(2+)]i are important for acquisition of luteolytic response to PGF2alpha.