Cardiovascular Diabetology (Jan 2019)

Association between serum haptoglobin and carotid arterial functions: usefulness of a targeted metabolomics approach

  • Shiyun Wang,
  • Jie Wang,
  • Rong Zhang,
  • Aihua Zhao,
  • Xiaojiao Zheng,
  • Dandan Yan,
  • Feng Jiang,
  • Wei Jia,
  • Cheng Hu,
  • Weiping Jia

DOI
https://doi.org/10.1186/s12933-019-0808-2
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Serum haptoglobin (Hp) has been closely associated with cardio-cerebrovascular diseases. We investigated a metabolic profile associated with circulating Hp and carotid arterial functions via a targeted metabolomics approach to provide insight into potential mechanisms. Methods A total of 240 participants, including 120 patients with type 2 diabetes mellitus (T2DM) and 120 non-diabetes mellitus (non-DM) subjects were recruited in this study. Targeted metabolic profiles of serum metabolites were determined using an AbsoluteIDQ™ p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). Ultrasound of the bilateral common carotid artery was used to measure intima-media thickness and inter-adventitial diameter. Serum Hp levels were tested by enzyme-linked immunosorbent assay. Results Serum Hp levels in T2DM patients and non-DM subjects were 103.40 (72.46, 131.99) mg/dL and 100.20 (53.99, 140.66) mg/dL, respectively. Significant differences of 19 metabolites and 17 metabolites were found among serum Hp tertiles in T2DM patients and non-DM subjects, respectively (P < 0.05). Of these, phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2) was the common metabolite observed in two populations, which was associated with the serum Hp groups and lipid traits (P < 0.05). Furthermore, the metabolite ratios of two acidic amino acids, including aspartate to PC ae C32:2 (Asp/PC ae C32:2) and glutamate to PC ae C32:2 (Glu/PC ae C32:2) were correlated with serum Hp, carotid arterial functions and other biochemical index in both populations significantly (P < 0.05). Conclusions Targeted metabolomics analyses might provide a new insight into the potential mechanisms underlying the association between serum Hp and carotid arterial functions.

Keywords