Metals (Sep 2017)

Effects of Post-Sinter Processing on an Al–Zn–Mg–Cu Powder Metallurgy Alloy

  • Matthew David Harding,
  • Ian William Donaldson,
  • Rich Lester Hexemer Junior,
  • Donald Paul Bishop

DOI
https://doi.org/10.3390/met7090370
Journal volume & issue
Vol. 7, no. 9
p. 370

Abstract

Read online

The objective of this work was to study the effects of several post-sinter processing operations (heat-treatment, sizing, shot peening) on a press-and-sinter 7xxx series aluminum powder metallurgy (PM) alloy. The characterization of the products was completed through a combination of non-contact surface profiling, hardness measurements, differential scanning calorimetry (DSC), transmission electron microscopy (TEM), X-ray diffraction (XRD), tensile, and three-point bend fatigue testing. It was determined that sizing in the as-quenched state imparted appreciable reductions in surface hardness (78 HRB) and fatigue strength (168 MPa) relative to counterpart specimens that were sized prior to solutionizing (85 HRB and 228 MPa). These declines in performance were ascribed to the annihilation of quenched in vacancies that subsequently altered the nature of precipitates within the finished product. The system responded well to shot peening, as this process increased fatigue strength to 294 MPa. However, thermal exposure at 353 K (80 °C) and 433 K (160 °C) then reduced fatigue performance to 260 MPa and 173 MPa, respectively, as a result of residual stress relaxation and in-situ over-aging.

Keywords