PLoS ONE (Jan 2018)

Specialized core bacteria associate with plants adapted to adverse environment with high calcium contents.

  • Fei Li,
  • Ximin Zhang,
  • Jiyi Gong,
  • Lunxian Liu,
  • Yin Yi

DOI
https://doi.org/10.1371/journal.pone.0194080
Journal volume & issue
Vol. 13, no. 3
p. e0194080

Abstract

Read online

Karst topography is formed from the dissolution of soluble rocks, such as limestone and dolomite. In soils of such a landform, excessive contents of exchangeable calcium seriously limit the growth of vegetations. Researches have proved that rhizosphere microorganisms and endophytes help host plants to adapt to various adverse environments. The adaptive capacity of plants that grow in adverse environment with salt, drought, thermal and heavy metal stresses partially or completely comes from symbiotic microorganisms. By using the high-throughput amplicon sequencing, the bacterial community structures in soil with high calcium contents and roots and leaves of Cochlearia henryi that is commonly seen in karst area were analyzed. The bacteria community structures in these three compartments showed obvious differences. This indicates that C. henryi, which is adaptive to high calcium stress, selectively co-exists with specific bacteria. Although the bacteria community structures in these three compartments differed significantly, there were 73 operational taxonomic units (OTUs) shared by karst soils as well as roots and leaves of C. henryi. The phylogenetic diversity of these 73 OTUs differed significantly from that of overall OTUs detected. There were also obvious differences in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways and abundance values between the 73 OTUs and overall bacterial communities. A large number of OTUs shared by the karst soils, roots and leaves of C. henryi had close genetic relationship with known stress-resistant bacterial strains. Our results showed that the functional bacteria can be predicted by exploring core bacteria, bacteria shared by soils, adaptable plant roots and leaves. This information will potentially accelerate studies on natural microbial communities which can promote the adaptive capacity of host plants to high calcium stress, and will be valuable for finding microbial strains for field application in karst topography.