Annals of Clinical and Translational Neurology (Sep 2019)
Spectral organization of focal seizures within the thalamotemporal network
Abstract
Abstract Objective To investigate dynamic changes in neural activity between the anterior nucleus of the thalamus (ANT) and the seizure onset zone (SOZ) in patients with drug‐resistant temporal lobe epilepsy (TLE) based on anatomic location, seizure subtype, and state of vigilance (SOV). Methods Eleven patients undergoing stereoelectroencephalography for seizure localization were recruited prospectively for local field potential (LFP) recording directly from the ANT. The SOZ was identified using line length and epileptogenicity index. Changes in power spectral density (PSD) were compared between the two anatomic sites as seizures (N = 53) transitioned from interictal baseline to the posttermination stage. Results At baseline, the thalamic LFPs were significantly lower and distinct from the SOZ with the presence of higher power in the fast ripple band (P < 0.001). Temporal changes in ictal power of neural activity within ANT mimic those of the SOZ, are increased significantly at seizure onset (P < 0.05), and are distinct for seizures that impaired awareness or that secondarily generalized (P < 0.05). The onset of seizure was preceded by a decrease in the mean power spectral density (PSD) in ANT and SOZ (P < 0.05). Neural activity correlated with different states of vigilance at seizure onset within the ANT but not in the SOZ (P = 0.005). Interpretation The ANT can be recruited at the onset of mesial temporal lobe seizures, and the recruitment pattern differs with seizure subtypes. Furthermore, changes in neural dynamics precede seizure onset and are widespread to involve temporo‐thalamic regions, thereby providing an opportunity to intervene early with closed‐loop DBS.