Biomedicines (Oct 2022)

Injectable Crosslinked Genipin Hybrid Gelatin–PVA Hydrogels for Future Use as Bioinks in Expediting Cutaneous Healing Capacity: Physicochemical Characterisation and Cytotoxicity Evaluation

  • Syafira Masri,
  • Manira Maarof,
  • Nor Fatimah Mohd,
  • Yosuke Hiraoka,
  • Yasuhiko Tabata,
  • Mh Busra Fauzi

DOI
https://doi.org/10.3390/biomedicines10102651
Journal volume & issue
Vol. 10, no. 10
p. 2651

Abstract

Read online

The irregular shape and depth of wounds could be the major hurdles in wound healing for the common three-dimensional foam, sheet, or film treatment design. The injectable hydrogel is a splendid alternate technique to enhance healing efficiency post-implantation via injectable or 3D-bioprinting technologies. The authentic combination of natural and synthetic polymers could potentially enhance the injectability and biocompatibility properties. Thus, the purpose of this study was to characterise a hybrid gelatin–PVA hydrogel crosslinked with genipin (GNP; natural crosslinker). In brief, gelatin (GE) and PVA were prepared in various concentrations (w/v): GE, GPVA3 (3% PVA), and GPVA5 (5% PVA), followed by a 0.1% (w/v) genipin (GNP) crosslink, to achieve polymerisation in three minutes. The physicochemical and biocompatibility properties were further evaluated. GPVA3_GNP and GPVA5_GNP with GNP demonstrated excellent physicochemical properties compared to GE_GNP and non-crosslinked hydrogels. GPVA5_GNP significantly displayed the optimum swelling ratio (621.1 ± 93.18%) and excellent hydrophilicity (38.51 ± 2.58°). In addition, GPVA5_GNP showed an optimum biodegradation rate (0.02 ± 0.005 mg/h) and the highest mechanical strength with the highest compression modulus (2.14 ± 0.06 MPa). In addition, the surface and cross-sectional view for scanning electron microscopy (SEM) displayed that all of the GPVA hydrogels have optimum average pore sizes (100–199 μm) with interconnected pores. There were no substantial changes in chemical analysis, including FTIR, XRD, and EDX, after PVA and GNP intervention. Furthermore, GPVA hydrogels influenced the cell biocompatibility, which successfully indicated >85% of cell viability. In conclusion, gelatin–PVA hydrogels crosslinked with GNP were proven to have excellent physicochemical, mechanical, and biocompatibility properties, as required for potential bioinks for chronic wound healing.

Keywords