Journal of Oral Microbiology (Dec 2022)
High iron-mediated increased oral fungal burden, oral-to-gut transmission, and changes to pathogenicity of Candida albicans in oropharyngeal candidiasis
Abstract
Background Iron affects the diversity of the oral microbial landscape. Laboratory-strain CAI4 of Candida albicans that causes oropharyngeal candidiasis (OPC) exhibits iron-induced changes to the cell wall, impacting phagocytosis (by macrophages) and susceptibility of fungal cells to cell wall-perturbing antifungals, in vitro.Aim To understand the effect of iron on the CAI4-strain, wild type (WT) SC5314-strain, and oral isolates of C. albicans.Methods An immunosuppressed murine model of OPC was used to assess the effect of iron on oral-to-gut infection and antifungal susceptibility of the CAI4-strain. In vitro antifungal susceptibility, cell wall analysis, and phagocytic assays were performed under low and high iron, for the SC5314-strain and oral isolates.Results High iron enhanced oral and gut fungal levels for the CAI4-strain in mice; CAI4 cells from low iron mice were more susceptible to antifungals. The SC5314-strain and oral isolates showed enhanced antifungal-resistance towards most antifungals tested, under high iron. Iron-mediated cell wall changes and phagocytic response in the SC5315-strain were similar to CAI4; oral isolates showed a variable response.Conclusion Host iron can potentially alter infection severity and dissemination, efficacy of antifungal treatment, and host immune response during OPC. Clinical isolates showed most of these effects of iron, despite exhibiting a varied cell wall composition-change response to iron.
Keywords