Toxins (Nov 2020)

A Study of Carry-Over and Histopathological Effects after Chronic Dietary Intake of Citrinin in Pigs, Broiler Chickens and Laying Hens

  • Celine Meerpoel,
  • Arnau Vidal,
  • Emmanuel K. Tangni,
  • Bart Huybrechts,
  • Liesbeth Couck,
  • Riet De Rycke,
  • Lobke De Bels,
  • Sarah De Saeger,
  • Wim Van den Broeck,
  • Mathias Devreese,
  • Siska Croubels

DOI
https://doi.org/10.3390/toxins12110719
Journal volume & issue
Vol. 12, no. 11
p. 719

Abstract

Read online

Citrinin (CIT) is a polyketide mycotoxin occurring in a variety of food and feedstuff, among which cereal grains are the most important contaminated source. Pigs and poultry are important livestock animals frequently exposed to mycotoxins, including CIT. Concerns are rising related to the toxic, and especially the potential nephrotoxic, properties of CIT. The purpose of this study was to clarify the histopathological effects on kidneys, liver, jejunum and duodenum of pigs, broiler chickens and laying hens receiving CIT contaminated feed. During 3 weeks, pigs (n = 16) were exposed to feed containing 1 mg CIT/kg feed or to control feed (n = 4), while 2 groups of broiler chickens and laying hens (n = 8 per group) received 0.1 mg CIT/kg feed (lower dose group) and 3 or 3.5 mg CIT/kg feed (higher dose group), respectively, or control feed (n = 4). CIT concentrations were quantified in plasma, kidneys, liver, muscle and eggs using a validated ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Kidneys, liver, duodenum and jejunum were evaluated histologically using light microscopy, while the kidneys were further examined using transmission electron microscopy (TEM). Histopathology did not reveal major abnormalities at the given contamination levels. However, a significant increase of swollen and degenerated mitochondria in renal cortical cells from all test groups were observed (p < 0.05). These observations could be related to oxidative stress, which is the major mechanism of CIT toxicity. Residues of CIT were detected in all collected tissues, except for muscle and egg white from layers in the lowest dose group, and egg white from layers in the highest dose group. CIT concentrations in plasma ranged between 0.1 (laying hens in lower dose group) and 20.8 ng/mL (pigs). In tissues, CIT concentrations ranged from 0.6 (muscle) to 20.3 µg/kg (liver) in pigs, while concentrations in chickens ranged from 0.1 (muscle) to 70.2 µg/kg (liver). Carry-over ratios from feed to edible tissues were between 0.1 and 2% in pigs, and between 0.1 and 6.9% in chickens, suggesting a low contribution of pig and poultry tissue-derived products towards the total dietary CIT intake for humans.

Keywords