Remote Sensing (Nov 2022)

Source Model and Triggered Aseismic Faulting of the 2021 Mw 7.3 Maduo Earthquake Revealed by the UAV-Lidar/Photogrammetry, InSAR, and Field Investigation

  • Ying-Hui Yang,
  • Qiang Xu,
  • Jyr-Ching Hu,
  • Yun-Sheng Wang,
  • Xiu-Jun Dong,
  • Qiang Chen,
  • Yi-Jun Zhang,
  • Hao-Liang Li

DOI
https://doi.org/10.3390/rs14225859
Journal volume & issue
Vol. 14, no. 22
p. 5859

Abstract

Read online

Multi-source datasets, including the UAV-Lidar/Photogrammetry, InSAR, and field investigation data, have been used for revealing the complex surface displacement pattern and focal mechanism of the 2021 Maduo Mw 7.3 earthquake. First, a co-seismic surface deformation field was extracted from the Synthetic Aperture Radar (SAR) images captured by ALOS-2 and Sentinel-1 satellites. Second, the SAR pixel offset tracking results were adopted to detect the initial location of the seismogenic fault. Then, the Lidar digital elevation model with high spatial resolution and field investigation were employed to refine and verify the location of the seismogenic fault. It was found that bifurcated strike-slip rupture should account for the 2021 Maduo earthquake. As indicated by the estimated faulting model based on the InSAR data, the maximal fault slip was ~6.2 m, occurring in the southeast of the main seismogenic fault, and five remarkable slip concentrations controlled the surface displacement of the 2021 Maduo earthquake. Furthermore, the co- and post-seismic InSAR deformation, dilatation, shear strain, Coulomb failure stress, and aftershock sequence suggest that the co-seismic rupture of the two main seismogenic faults have triggered the aseismic slip along the Changmahe fault. Lastly, according to the Coulomb failure stress change due to the historical earthquakes and the 2021 Maduo earthquake, the 1937 M 7.8 earthquake predominantly controlled the Coulomb failure stress change along the Kunlun fault, and the Xidatan-Alake Lake and Maqin segments had a higher risk of future earthquake than the other segments.

Keywords