Atmospheric Measurement Techniques (Jan 2022)

Estimating oil sands emissions using horizontal path-integrated column measurements

  • T. G. Pernini,
  • T. S. Zaccheo,
  • J. Dobler,
  • N. Blume

DOI
https://doi.org/10.5194/amt-15-225-2022
Journal volume & issue
Vol. 15
pp. 225 – 240

Abstract

Read online

Improved technologies and approaches to reliably measure and quantify fugitive greenhouse gas emissions from oil sands operations are needed to accurately assess emissions and develop mitigation strategies that minimize the cost impact of future production. While several methods have been explored, the spatial and temporal heterogeneity of emissions from oil sand mines and tailings ponds suggests an ideal approach would continuously sample an area of interest with spatial and temporal resolution high enough to identify and apportion emissions to specific areas and locations within the measurement footprint. In this work we demonstrate a novel approach to estimating greenhouse gas emissions from oil sands tailings ponds and open-pit mines. The approach utilizes the GreenLITE™ gas concentration measurement system, which employs a laser-absorption-spectroscopy-based, open-path, integrated column measurement in conjunction with an inverse dispersion model to estimate methane (CH4) emission rates from an oil sands facility located in the Athabasca region of Alberta, Canada. The system was deployed for extended periods of time in the summer of 2019 and spring of 2020. CH4 emissions from a tailings pond were estimated to be 7.2 metric tons per day (t/d) for July–October 2019, and 5.1 t/d for March–July 2020. CH4 emissions from an open-pit mine were estimated to be 24.6 t/d for September–October 2019. Uncertainty in retrieved emission for the tailings pond in March–July 2020 is estimated to be 2.9 t/d. Descriptions of the measurement system, measurement campaigns, emission retrieval scheme, and emission results are provided.