Ecological Informatics (Nov 2024)

Modelling soil prokaryotic traits across environments with the trait sequence database ampliconTraits and the R package MicEnvMod

  • Jonathan Donhauser,
  • Anna Doménech-Pascual,
  • Xingguo Han,
  • Karen Jordaan,
  • Jean-Baptiste Ramond,
  • Aline Frossard,
  • Anna M. Romaní,
  • Anders Priemé

Journal volume & issue
Vol. 83
p. 102817

Abstract

Read online

We present a comprehensive, customizable workflow for inferring prokaryotic phenotypic traits from marker gene sequences and modelling the relationships between these traits and environmental factors, thus overcoming the limited ecological interpretability of marker gene sequencing data. We created the trait sequence database ampliconTraits, constructed by cross-mapping species from a phenotypic trait database to the SILVA sequence database and formatted to enable seamless classification of environmental sequences using the SINAPS algorithm. The R package MicEnvMod enables modelling of trait – environment relationships, combining the strengths of different model types and integrating an approach to evaluate the models' predictive performance in a single framework. Traits could be accurately predicted even for sequences with low sequence identity (80 %) with the reference sequences, indicating that our approach is suitable to classify a wide range of environmental sequences. Validating our approach in a large trans-continental soil dataset, we showed that trait distributions were robust to classification settings such as the bootstrap cutoff for classification and the number of discrete intervals for continuous traits. Using functions from MicEnvMod, we revealed precipitation seasonality and land cover as the most important predictors of genome size. We found Pearson correlation coefficients between observed and predicted values up to 0.70 using repeated split sampling cross validation, corroborating the predictive ability of our models beyond the training data. Predicting genome size across the Iberian Peninsula, we found the largest genomes in the northern part. Potential limitations of our trait inference approach include dependence on the phylogenetic conservation of traits and limited database coverage of environmental prokaryotes. Overall, our approach enables robust inference of ecologically interpretable traits combined with environmental modelling allowing to harness traits as bioindicators of soil ecosystem functioning.

Keywords