APL Photonics (Dec 2024)

High detectivity terahertz radiation sensing using frequency-noise-optimized nanomechanical resonators

  • Chang Zhang,
  • Eeswar K. Yalavarthi,
  • Mathieu Giroux,
  • Wei Cui,
  • Michel Stephan,
  • Ali Maleki,
  • Arnaud Weck,
  • Jean-Michel Ménard,
  • Raphael St-Gelais

DOI
https://doi.org/10.1063/5.0238977
Journal volume & issue
Vol. 9, no. 12
pp. 126105 – 126105-8

Abstract

Read online

We achieve high detectivity terahertz radiation sensing using a silicon nitride nanomechanical resonator functionalized with a metasurface absorber. High performances are achieved by striking a balance between the frequency stability of the resonator and its responsivity to absorbed radiation. Using this approach, we demonstrate a detectivity D*≈3.4×109cm⋅Hz/W and a noise equivalent power NEP≈36pW/Hz that outperform the best room-temperature on-chip THz detectors, such as pyroelectric detectors, while maintaining a comparable thermal response time of ≈200 ms. Our optical absorber consists of a 1-mm diameter metasurface, which currently enables a 0.5–3 THz detection range but can easily be scaled to other frequencies in the THz and infrared ranges. In addition to demonstrating high-performance terahertz radiation sensing, our work unveils an important fundamental trade-off between frequency stability and responsivity in thermal-based nanomechanical radiation sensors.