JPhys Materials (Jan 2023)

Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh

  • Jon Ander Arregi,
  • Friederike Ringe,
  • Jan Hajduček,
  • Olena Gomonay,
  • Tomáš Molnár,
  • Jiří Jaskowiec,
  • Vojtěch Uhlíř

DOI
https://doi.org/10.1088/2515-7639/acce6f
Journal volume & issue
Vol. 6, no. 3
p. 034003

Abstract

Read online

Magnetic phase transition materials are relevant building blocks for developing green technologies such as magnetocaloric devices for solid-state refrigeration. Their integration into applications requires a good understanding and controllability of their properties at the micro- and nanoscale. Here, we present an optical microscopy study of the phase domains in FeRh across its antiferromagnetic–ferromagnetic phase transition. By tracking the phase-dependent optical reflectivity, we establish that phase domains have typical sizes of a few microns for relatively thick epitaxial films (200 nm), thus enabling visualization of domain nucleation, growth, and percolation processes in great detail. Phase domain growth preferentially occurs along the principal crystallographic axes of FeRh, which is a consequence of the elastic adaptation to both the substrate-induced stress and laterally heterogeneous strain distributions arising from the different unit cell volumes of the two coexisting phases. Furthermore, we demonstrate a magnetic-field-controlled directional growth of phase domains during both heating and cooling, which is predominantly linked to the local effect of magnetic dipolar fields created by the alignment of magnetic moments in the emerging (disappearing) FM phase fraction during heating (cooling). These findings highlight the importance of the magnetoelastic character of phase domains for enabling the local control of micro- and nanoscale phase separation patterns using magnetic fields or elastic stresses.

Keywords