Acta Scientiarum: Animal Sciences (Jul 2010)
Predição de valores genéticos utilizando inferência bayesiana e frequentista em dados simulados = Prediction of genetic values using bayesian inference and frequent on simulated data
Abstract
Dados simulados foram utilizados para comparar as metodologias Eblup eBayesiana, em dados com homogeneidade de variâncias, heterogeneidade de variância genética e heterogeneidade de variância genética e ambiental. Para obtenção dessas estruturas foram feitos descartes estratégicos dos valores genéticos aditivos e ambientais de acordo com o tipo de heterogeneidade e o nível de variabilidade desejada (alta, média ou baixa), sendo utilizados dois tamanhos de população (grande e pequena). Para a metodologia Bayesiana foram utilizados três níveis de informação a priori: não informativo, pouco informativo e informativo. A presença da heterogeneidade de variâncias causa problemas para a seleção dos melhores indivíduos, principalmente se a heterogeneidade estiver nos componentes de variância genética e ambiental, sendo os animais selecionadosequivocadamente do ambiente mais variável. Os métodos comparados tiveram resultados semelhantes, quando distribuições a priori não informativas foram utilizadas, e as populações de tamanho grande, de modo geral, apresentaram melhores predições de valores genéticos.Foi observado, para a metodologia Bayesiana, que o aumento no nível de informação a priori influencia positivamente as predições dos valores genéticos, principalmente para as populações pequenas. O método Bayesiano é indicado para populações de tamanho pequeno quando há disponibilidade de distribuições a priori informativas.Simulated data were used to compare EBLUP and Bayesian methods in datawith homogeneity of variance, heterogeneity of variance and genetic heterogeneity of genetic and environmental variance. For these structures were strategic disposal of additive genetic and environmental values in accordance with the type of heterogeneity and the desired level of variability: high, medium or low. We used two sizes of population: large and small. For the Bayesian methodology was used three levels of a priori information: no information, justinformation and informative. For verification of the introduction of different levels of information they were used the mistake percentage in relation to the true value of the variance components the Spearman correlation and the medium square of the mistake among the real genetic values and predicted them. The presence of heterogeneity of variances cause problems for the selection of the best individuals, especially if the heterogeneity is present in the components of genetic variance and environmental and animals are mistakenly selected the more variable environment. The methods presented similar results when compared not informative priors were used, and the populations of large size, in general, showed better prediction ofbreeding values. Was observed for the Bayesian methodology, the increase in the level of a priori information positively influences the predictions of genetic values, especially for small populations. The Bayesian method is preferred for populations of small size when there is availability of informative priors.