Case Studies in Chemical and Environmental Engineering (Jun 2025)
TrashNeXt: Classification of recyclable water pollutants using deep transfer learning method
Abstract
An automatic waste classification system embedded with higher accuracy and precision of convolution neural network (CNN) model can significantly the reduce manual labor involved in recycling. The ConvNeXt architecture has gained remarkable improvements in image recognition. A larger dataset, called TrashNeXt, comprising 23,625 images across nine categories has been introduced in this study by combining and thoroughly analyzing various pre-existing datasets. The deep transfer learning (DTL)-based proposed model achieved the highest accuracy of 94.97% compared to other CNN models by applying image augmentation and comprehensively fine-tuning hyperparameters. Additionally, the trained and optimized weights are utilized to classify water-bound liter objects.