BMC Biology (May 2022)
Optimization of the antimicrobial peptide Bac7 by deep mutational scanning
Abstract
Abstract Background Intracellularly active antimicrobial peptides are promising candidates for the development of antibiotics for human applications. However, drug development using peptides is challenging as, owing to their large size, an enormous sequence space is spanned. We built a high-throughput platform that incorporates rapid investigation of the sequence-activity relationship of peptides and enables rational optimization of their antimicrobial activity. The platform is based on deep mutational scanning of DNA-encoded peptides and employs highly parallelized bacterial self-screening coupled to next-generation sequencing as a readout for their antimicrobial activity. As a target, we used Bac71-23, a 23 amino acid residues long variant of bactenecin-7, a potent translational inhibitor and one of the best researched proline-rich antimicrobial peptides. Results Using the platform, we simultaneously determined the antimicrobial activity of >600,000 Bac71-23 variants and explored their sequence-activity relationship. This dataset guided the design of a focused library of ~160,000 variants and the identification of a lead candidate Bac7PS. Bac7PS showed high activity against multidrug-resistant clinical isolates of E. coli, and its activity was less dependent on SbmA, a transporter commonly used by proline-rich antimicrobial peptides to reach the cytosol and then inhibit translation. Furthermore, Bac7PS displayed strong ribosomal inhibition and low toxicity against eukaryotic cells and demonstrated good efficacy in a murine septicemia model induced by E. coli. Conclusion We demonstrated that the presented platform can be used to establish the sequence-activity relationship of antimicrobial peptides, and showed its usefulness for hit-to-lead identification and optimization of antimicrobial drug candidates.
Keywords