Environment International (Oct 2024)
Differences in cellular and molecular processes in exposure to PM2.5 and O3
Abstract
Epidemiological and toxicological studies have shown that PM2.5 and O3 could pose significant risks to human health, such as an increased incidence of respiratory and cardiovascular diseases. Usually, the adverse health outcomes induced by PM2.5 and O3 exposure are similar. However, PM2.5 and O3 have distinct physical and chemical properties, with PM2.5 being a solid–liquid mixture and O3 being a strongly oxidizing gaseous pollutant. Therefore, we speculated that there are some differences in biological processes induced by PM2.5 and O3 exposure. In the present study, we investigated the differences induced by PM2.5 and O3 exposure from the perspective of cellular and molecular processes. Firstly, the pulmonary epithelial cells (BEAS-2B) were exposed to different concentrations of PM2.5 or O3 at different durations. Then, we chose experimental models with the concentrations and duration at which the cell survival rate was 50 % after exposure to PM2.5 and O3, which were 100 μg/mL for 24 h for PM2.5, and 200 ppb for 4 h for O3. Our findings indicate that PM2.5 infiltrates cells via endocytosis without causing significant damage to cell membranes, while O3 induces lipid peroxidation at the cell surface. Moreover, the detection of mitochondrial function showed that the content of ATP was significantly reduced after exposure to both PM2.5 and O3. However, we found a significant difference in mtDNA copy number. PM2.5 exposure increased the mtDNA copy number by up-regulating the expression of fission genes (Fis1, Mff, Dnm1). O3 exposure decreased it by up-regulating the expression of fusion gene (Mfn1, Mfn2) and down-regulating the expression of fission gene (Fis1, Dnm1). These results indicate that although both PM2.5 and O3 exposure induced almost exactly similar adverse health outcomes, significant differences do exist in cellular and molecular processes.