Acta Pharmaceutica Sinica B (Aug 2023)

A highly selective C-rhamnosyltransferase from Viola tricolor and insights into its mechanisms

  • Bo-Yun Han,
  • Zi-Long Wang,
  • Junhao Li,
  • Qing Jin,
  • Hao-Tian Wang,
  • Kuan Chen,
  • Yang Yi,
  • Hans Ågren,
  • Xue Qiao,
  • Min Ye

Journal volume & issue
Vol. 13, no. 8
pp. 3535 – 3544

Abstract

Read online

C-Glycosides are important natural products with various bioactivities. In plant biosynthetic pathways, the C-glycosylation step is usually catalyzed by C-glycosyltransferases (CGTs), and most of them prefer to accept uridine 5′-diphosphate glucose (UDP-Glc) as sugar donor. No CGTs favoring UDP-rhamnose (UDP-Rha) as sugar donor has been reported, thus far. Herein, we report the first selective C-rhamnosyltransferase VtCGTc from the medicinal plant Viola tricolor. VtCGTc could efficiently catalyze C-rhamnosylation of 2-hydroxynaringenin 3-C-glucoside, and exhibited high selectivity towards UDP-Rha. Mechanisms for the sugar donor selectivity of VtCGTc were investigated by molecular dynamics (MD) simulations and molecular mechanics with generalized Born and surface area solvation (MM/GBSA) binding free energy calculations. Val144 played a vital role in recognizing UDP-Rha, and the V144T mutant could efficiently utilize UDP-Glc. This work provides a new and efficient approach to prepare flavonoid C-rhamnosides such as violanthin and iso-violanthin.

Keywords