mSystems (Oct 2024)
Exploring the vitamin biosynthesis landscape of the human gut microbiota
Abstract
ABSTRACT The human gut microbiota possesses the capacity to synthesize vitamins, especially B group vitamins, which are recognized as indispensable for various biological processes both among members of these bacterial communities and host cells. Accordingly, vitamin production by intestinal commensals has attracted significant interest. Nevertheless, our current understanding of bacterial vitamin synthesis is primarily based on individual genomic and monoculture investigations, therefore not providing an overall view of the biosynthetic potential of complex microbial communities. In the current study, we utilized over 100 bacterial genes known to be involved in the biosynthesis of B group and K vitamins to assess the corresponding vitamin biosynthetic potential of approximately 8,000 human gut microbiomes. Our analyses reveal that host-associated factors, such as age and geographical origin, appear to influence the diversity and abundance of vitamin biosynthetic pathways. Furthermore, we identify gut microbiota members that substantially contribute to these biosynthetic functions at each stage of human life. Interestingly, inference of microbial co-associations and network relationships uncovered the apparent key role played by folate and cobalamin in equilibrium establishment of the infant and adult gut microbial communities, respectively.IMPORTANCEOverall, this study expands our understanding of microbe-mediated vitamin biosynthesis in the human gut and may provide potential novel targets to improve availability of these essential micronutrients in the host.
Keywords