BMC Public Health (Apr 2022)

Characteristics of users of HIV self-testing in Kenya, outcomes, and factors associated with use: results from a population-based HIV impact assessment, 2018

  • Jonathan Mwangi,
  • Fredrick Miruka,
  • Mary Mugambi,
  • Ahmed Fidhow,
  • Betty Chepkwony,
  • Frankline Kitheka,
  • Evelyn Ngugi,
  • Appolonia Aoko,
  • Catherine Ngugi,
  • Anthony Waruru

DOI
https://doi.org/10.1186/s12889-022-12928-0
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background and setting About 20% of persons living with HIV aged 15–64 years did not know their HIV status in Kenya, by 2018. Kenya adopted HIV self-testing (HIVST) to help close this gap. We examined the sociodemographic characteristics and outcomes of self-reported users of HIVST as our primary outcome. Methods We used data from a 2018 population-based cross-sectional household survey in which we included self-reported sociodemographic and behavioral characteristics and HIV test results. To compare weighted proportions, we used the Rao-Scott χ-square test and Jackknife variance estimation. In addition, we used logistic regression to identify associations of sociodemographic, behavioral, and HIVST utilization. Results Of the 23,673 adults who reported having ever tested for HIV, 937 (4.1%) had ever self-tested for HIV. There were regional differences in HIVST, with Nyanza region having the highest prevalence (6.4%), p < 0.001. Factors independently associated with having ever self-tested for HIV were secondary education (adjusted odds ratio [aOR], 3.5 [95% (CI): 2.1–5.9]) compared to no primary education, being in the third (aOR, 1.7 [95% CI: 1.2–2.3]), fourth (aOR, 1.6 [95% CI: 1.1–2.2]), or fifth (aOR, 1.8 [95% CI: 1.2–2.7]) wealth quintiles compared to the poorest quintile and having one lifetime sexual partner (aOR, 1.8 [95% CI: 1.0–3.2]) or having ≥ 2 partners (aOR, 2.1 [95% CI: 1.2–3.7]) compared to none. Participants aged ≥ 50 years had lower odds of self-testing (aOR, 0.6 [95% CI: 0.4–1.0]) than those aged 15–19 years. Conclusion Kenya has made progress in rolling out HIVST. However, geographic differences and social demographic factors could influence HIVST use. Therefore, more still needs to be done to scale up the use of HIVST among various subpopulations. Using multiple access models could help ensure equity in access to HIVST. In addition, there is need to determine how HIVST use may influence behavior change towardsaccess to prevention and HIV treatment services.

Keywords