Cell Death and Disease (Nov 2021)

RelA/MicroRNA-30a/NLRP3 signal axis is involved in rheumatoid arthritis via regulating NLRP3 inflammasome in macrophages

  • Qiudong Yang,
  • Wenhua Zhao,
  • Yuyi Chen,
  • Yue Chen,
  • Jiali Shi,
  • Ran Qin,
  • Hua Wang,
  • Ruixia Wang,
  • Hua Yuan,
  • Wen Sun

DOI
https://doi.org/10.1038/s41419-021-04349-5
Journal volume & issue
Vol. 12, no. 11
pp. 1 – 12

Abstract

Read online

Abstract NLRP3 inflammasome plays an important role in the pathogenesis of rheumatoid arthritis (RA). However, the post-transcriptional regulation of NLRP3 expression by miRNA in synovial macrophages is still not well understood. The aim of the study is to elucidate the mechanisms of RA with the focus on miRNAs mediated post-transcriptional regulation of the NLRP3 inflammasome. Here, we used NLRP3-deficient mice (NLRP3KO) to cross with TNFα-transgenic mice (TNFTG) to generate NLRP3KO/TNFTG mice, and compared their joint phenotypes with those of their TNFTG and wild-type (WT) littermates at 5 months of age. In comparison to WT mice, articular bone volume and cartilage area are decreased, whereas inflammed area, eroded surface, ALP+ osteoblast number, TRAP+ osteoclast number, and the areas of RelA+F4/80+, Caspase-1+F4/80+, IL-1β+F4/80+ synoviocytes are increased in the TNFTG mice. Knockout of NLRP3 ameliorates joint inflammation and bone damage in TNFTG mice. Further, in TNFα-primed BMDMs, RelA positively regulates NLRP3 expression, but negatively regulates miR-30a. Additionally, miR-30a negatively mediates NLRP3 expression by directly binding to its 3ʹ UTR, suggesting a miR-30a-mediated feedforward loop acting on NLRP3. Finally, intra-articular injection of AAV-miR-30a inhibits NLRP3 inflammasome activation, reduces joint inflammation, and attenuates bone damage in TNFTG mice. Thus, RelA/miR-30a/NLRP3 signal axis is involved in RA through regulating NLRP3 Inflammasome in macrophages.