Journal of Cardiovascular Development and Disease (Dec 2023)

Soft-Matter Physics Provides New Insights on Myocardial Architecture: Automatic and Quantitative Identification of Topological Defects in the Trabecular Myocardium

  • Johanne Auriau,
  • Yves Usson,
  • Pierre-Simon Jouk

DOI
https://doi.org/10.3390/jcdd11010011
Journal volume & issue
Vol. 11, no. 1
p. 11

Abstract

Read online

This article is the third in our series dedicated to the analysis of cardiac myoarchitecture as a nematic chiral liquid crystal (NCLC). Previously, we introduced the concept of topological defects (disclinations) and focused on their visual identification inside the compact myocardium. Herein, we investigate these using a mathematical and automated algorithm for the reproducible identification of a larger panel of topological defects throughout the myocardium of 13 perinatal and 11 early infant hearts. This algorithm identified an average of 29 ± 11 topological defects per slice with a 2D topological charge of m = +1/2 and an average of 27 ± 10 topological defects per slice with a 2D topological charge of m = −1/2. The excess of defects per slice with a 2D topological charge of m = +1/2 was statistically significant (p m = +1/2 and m = −1/2 between perinatal and early infant hearts. These defects were mostly arranged in pairs, as expected in nematics, and located inside the trabecular myocardium. When isolated, defects with a 2D topological charge of m = +1/2 were located near the luminal extremity of the trabeculae and those with a 2D topological charge of m = −1/2 were located at the anterior and posterior part of the interventricular septum. These findings constitute an advance in the characterization of the deep cardiac myoarchitecture for application in developmental and pathological studies.

Keywords