Nuclear Engineering and Technology (Apr 2019)

Impact of thermal and chemical treatment on the mechanical properties of E110 and E110G cladding tubes

  • M. Király,
  • Z. Hózer,
  • M. Horváth,
  • T. Novotny,
  • E. Perez-Feró,
  • N. Vér

Journal volume & issue
Vol. 51, no. 2
pp. 518 – 525

Abstract

Read online

The mechanical and corrosion behavior of the Russian zirconium fuel cladding alloy E110, predominantly used in VVERs, has been investigated for many decades. The recent commercialization of a new, optimized E110 alloy, produced on a sponge zirconium basis, gave the opportunity to compare the mechanical properties of the old and the new E110 fuel claddings.Axial and tangential tensile test experiments were performed with samples from both claddings in the MTA EK. Due to the anisotropy of the cladding tubes, the axial tensile strength was 10–15% higher than the tangential (measured by ring tensile tests). The tensile strength of the new E110G alloy was 11% higher than that of the E110 cladding at room temperature.Some samples underwent chemical treatment – slight oxidation in steam or hydrogenation – or heat treatment – in argon atmosphere at temperatures between 600 and 1000 °C. The heat treatment during the oxidation had more significant effect on the tensile strength of the claddings than the oxidation itself, which lowered the tensile strength as the thickness of the metal decreased. The hydrogenation of the cladding samples slightly lowered the tensile strength and the samples but they remained ductile even at room temperature. Keywords: E110, E110G, Tensile test, Tensile strength, Heat treatment, Oxidation, Hydrogenation