Guangtongxin yanjiu (Jun 2024)
Research on the Integration of Space Laser Communication and Ranging
Abstract
【Objective】With the continuous advancements in satellite and communication technologies, the integration of space laser communication and ranging technology becomes more mature. As deep space exploration, satellite navigation, and other fields continue to develop, there is a growing demand for higher communication capacity and ranging accuracy between satellites. Thus, the need to achieve laser satellite high-speed communication while completing ranging and further improving ranging accuracy, under the premise of considering satellite payload and power consumption, has become an urgent issue.【Methods】This article designs and implements a coherent communication and ranging integrated system that supports both QPSK and BPSK, based on the principle of dual one way ranging. To further improve the ranging performance, the differential time sampling method is used to obtain the frequency difference and phase difference between the sending clock and the receiving clock through frequency and phase discrimination, thereby achieving higher clock accuracy and correcting the ranging value.【Results】The system can operate stably in an environment where the received optical power is greater than-48 dBm. Different rates can be set for different application requirements, with a maximum rate of 5 Gbit/s in QPSK mode and rates of 2.5 Gbit/s, 1.25 Gbit/s, and 625 Mbit/s in BPSK mode. The theoretical ranging accuracy of the system can reach a minimum of 53 ps. In normal communication, using Matlab and Vivado to calculate and process ranging data, the ranging accuracy of the system is verified to be less than 0.1 ns. Furthermore, using the differential time sampling method under simulation conditions, the ranging accuracy can be improved to the order of 10-3 of the symbol width, reaching±0.36 cm.【Conclusion】The proposed communication and ranging integrated system can achieve high-precision ranging while achieving high-speed communication, which is of practical significance for future applications of laser satellites.