Machines (Oct 2022)

Research on Acceleration Performance Optimization of Large Inertia Hydraulic Actuator Based on Main Valve Input Shaping

  • Wenbo Fu,
  • Xiaoming Yuan,
  • Yongquan Li,
  • Lijie Zhang

DOI
https://doi.org/10.3390/machines10110987
Journal volume & issue
Vol. 10, no. 11
p. 987

Abstract

Read online

In order to optimize the acceleration performance of a large inertia hydraulic actuator, this paper proposes a main valve input shaping control strategy, which makes the valve flow supply match the load-control demand by adjusting the main valve flow growth rate. Taking a load-independent flow distribution system as the research object, and aiming at the problems of large pressure overshoot, excessive overflow and oscillation tendency during the actuator acceleration process, this paper divides the acceleration process into the pressure build-up condition, the inertia-acceleration condition and the stable-flow regulation condition according to the change characteristics of the actuator driving pressure, and divides the main valve control signal into five stages to design the valve flow growth rate, thereby smoothing the driving pressure fluctuations by adjusting the actuator inertial load and mitigating the pressure release process. Based on the key structure-hydraulic parameters and test data of a 6-ton excavator, a virtual excavator that can accurately simulate the swing action and boom lifting action is built, and the software-in-the-loop test of the input-shaping control algorithm is carried out. The test results indicate that the proposed control strategy can effectively suppress the pressure overshoot, oscillation, and flow overmatching, thereby improving the dynamic stability and energy efficiency of the system.

Keywords